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Thus, many of the former problematic issues affectingA Suppression Strategy for
target-based screening are circumvented.Antibiotic Discovery For example, by using a phenotype-based screen,
Mitchison, Schreiber, and colleagues [2] identified an
inhibitor of mitosis in mammalian cells with monopolar
spindles, out of a library of 16,320 compounds. TheHigh-throughput phenotype screening and target
inhibitor discovered, monastrol, attacks the motility ofidentification have been combined in an effort to iso-
the mitotic kinesin Eg5, preventing normal spindle bipo-late antimicrobial, small-molecule therapeutics [1].
larity and thereby validating it as a potential anticancerThis approach, developed by Brown and colleagues
drug. At the time of this study, the only other previouslyand reported in this issue, is a major technological
known inhibitors of kinesin were cell impermeable. Thisadvance for antimicrobial drug discovery.
work clearly demonstrates the advantages of employing
phenotype screens in finding compounds that haveThe discovery and development of novel antimicrobials
novel activities within a biological system.via target-based approaches has historically been

However, there is a slight problem. Although pheno-plagued by difficulties associated with optimizing small
type screens allow the rapid and selective identificationmolecule leads out of biochemical screens while pre-
of compounds that elicit a specific biological response,serving or improving upon antimicrobial activity. This is
the mode of action of active compounds cannot bedue in large part because the factors governing small-
effectively and clearly deduced given the inherent com-molecule permeability and substrate selection criteria
plexity resulting from the large number of possible tar-for efflux pumps in bacterial cells are poorly understood
gets whose function is altered by the presence of thephenomena. However, high-throughput, phenotype-
biological modifier. The success rate of finding a specificbased screening methods offer a new promising strat-
mechanism of action hinges on the stringency affordedegy for identifying compounds from high-throughput
by the phenotype screen as well as the level of knowl-screens that elicit a specific biological response. Unlike
edge of the possible targets impacted by the small-target-based screening of biochemical activities, phe-
molecule effector. In the aforementioned example, Mit-notype-based screening selects for compound candi-
chison and Schreiber’s search for a target was facilitateddates that can penetrate cells, remain relatively unaf-

fected by efflux pumps, and function properly in vivo. by the fact that the small molecule caused a mitotic
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Figure 1. Multi-Copy Suppression in High-Throughput Antimicrobial Discovery

(A) Control: An illustration of a bacterial cell containing within its genome a potential target protein essential for cell growth or viability.
(B) High-throughput phenotype screening for antimicrobial leads: Upon addition of a small molecule from a high-throughput screening (HTS)
library, growth is inhibited and the lead compound is identified based on inhibited-growth phenotypes.
(C) High-throughput multi-copy suppression target identification. In the presence of the small-molecule antimicrobial candidate, bacteria
containing multiple copies of overexpression plasmids containing random genome fragments from the parent bacterial genome are induced,
with the overexpressed target protein identified from colonies exhibiting a restoration of the normal growth phenotype. The overexpression
plasmid containing the expressed genome fragment is subsequently isolated and sequenced for purposes of target identification. By this
method, a candidate antimicrobial lead compound from HTS library screening might be rapidly paired to a target protein identified by a
genome-wide analysis using high-throughput, phenotype-directed screening.

disturbance, narrowing the number of suspected targets and validation [1]. In effect, the technology allows one
to work from both ends of the problem simultaneously.[2]. However, for more general screens that select for

bioactive compounds based upon cell or colony growth, First, by using a hyperpermeable rough lipopolysac-
charide mutant strain of E.coli (MC1061) as the small-inhibition or lysis can have many possible mechanisms

of action. For the search of novel antimicrobials, what molecule permeable reporter strain, Brown and cowork-
ers screened a library of 8640 compounds, discoveringis needed is the combination of the power of high-

throughput phenotype screening with a mechanism of 196 lead compounds that altered cell growth [1]. After
determining the minimum inhibitory concentrationsrapid target discovery and validation.

In this issue of Chemistry & Biology, Brown, Wright, (MIC) of each substance, they narrowed the antimicro-
bial leads to 49 candidates by selecting representativesand coworkers from the Antimicrobial Research Centre

at McMaster University have devised the first integrated of similar chemical structures. An innovative improve-
ment on traditional multi-copy suppression was thentechnology for rapid high-throughput phenotype-based

antimicrobial discovery and concomitant target identifi- applied for the evaluation of the mechanism of action
of these 49 candidates. Instead of using a single targetcation and validation by using multi-copy suppression

techniques [1]. Multi-copy or high-copy suppression is a gene for multi-copy suppression, Brown and colleagues
screened each lead compound against cells that overex-forward chemical genetics-based technique that allows

the specific identification of target proteins impacted by pressed 3–4 kb random genomic fragments from an
E. coli genomic library. Cultures that grew despite com-small-molecule effectors by providing multiple copies

of the target proteins by using high-copy expression pound levels exceeding MIC values were thus identified
as containing multiple copies of the suppressing targetplasmids (Figure 1). This technique accelerates the vali-

dation of targets, elucidation of resistance mechanisms protein. Clones with phenotypes possessing resistance
above wild-type MIC values reduced the pool of leadsto established drugs, and the selection of compounds

biologically compatible with the host system [3–5]. Typi- from 49 to 33. Of these 33 clones, 31 clones acquired
resistance because they overexpress acrB, the mem-cally, multi-copy suppression techniques are primarily

utilized as a confirmatory step in the final stages of brane-spanning subunit of the acridine efflux trans-
porter. The remaining 2,4-diaminopyrimidine- and 2,4-in vivo target evaluation of a single gene product or

small subset of gene product target candidates. For diaminoquinazoline-containing molecules, were paired
to clones that overexpressed the gene folA, encodingexample, Burger and colleagues [6] employed multi-

copy suppression to identify resistance genes to the dihydrofolate reductase (DHFR). Inhibition of DHFR by
these compounds was subsequently confirmed in vitroanticancer drug cisplatin. More closely related to antimi-

crobial discovery, Li and colleagues have employed and by paralleling protein expression levels with com-
pound MIC value changes. Importantly, this work alsomulti-copy suppression in order to identify the targets

of bacterial growth inhibitors [7]. In this report, Brown lead to the discovery of a novel inhibitor of DHFR with no
structural relationship to the well-known DHFR inhibitor,and coworkers have developed a significant technologi-

cal advance for antimicrobial discovery by combining methotrexate.
This approach elegantly tackles two prime obstaclesthe power of high-throughput phenotype-based screen-

ing with a novel high-throughput library-based approach associated with antimicrobial discovery with high-
throughput screening techniques: specific identificationto multi-copy suppression-based target identification
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Another especially useful aspect of this technology is
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